하위인접 조건과 공범주 원리

1. 서론

Chomsky(1986)는 지배와 이동에 대한 국부성 조건(locality condition)을 통합하려는 시도에서 장벽(barrier)이라는 개념을 도입하여, 형상구조상 특정 구조적 위치가 장벽이 되는 것으로 정의한다. 그러나, L - 표시(L - mark)와 최소성 조건(minimality condition)으로 정의되는 Chomsky의 장벽이론은 여러가지 특수한 조건을 요하며, 공범주 원리(empty category principle : ECP)도 의미역 지배(θ - government) 또는 선행자 지배(antecedent government)라는 두 가지의 이질적인 요건이 이질적으로 결합되어 있다는 결합이 있으며, 모든 혼적을 보편적으로 설명할 수도 없다.

이에 본 논문에서는 Chomsky(1987)의 고유장벽과 Rizzi(1990)의 상대적 최소성 조건(relativized minimality)을 수정하여 이동과 지배를 차단하는 장벽을 설정하고, 공범주 원리를 '모든 혼적이 선행자 지배되고 고유 해지배'되어야 하는 것으로 수정함으로써, 하위인접 조건과 공범주 원리의 양여성을 제거하
2. 장벽과 구부성 조건

Chomsky(1986)는 장벽이라는 개념을 도입하여, 모든 장벽이 지배를 차단하는 반면 이동은 하나의 장벽을 넘을 수 있는 것으로 분석함으로써, 지배와 이동에 대한 구부성 조건을 장벽이라는 개념으로 통합할 수 있는 것으로 분석한다. 장벽에는 최대 투사법주가 L-mark되지 않으므로서 형성되는 고유장벽(inherent barrier)과 이런 고유장벽(또는 차단범주)에서 장벽성을 제승하는 계승장벽(inherited barrier) 및 최소성 조건에 의해 형성되는 최소장벽이 있으 며, 고유장벽과 계승장벽은 지배와 이동에 대한 장벽이 되는 반면에 최소장벽 은 지배에 대해서만 장벽이 된다.

장벽과 이에 연관된 개념은 다음과 같이 정의된다.

(1) a. \(\gamma \) is a barrier for \(\beta \) iff (a) or (b)
 (a) \(\gamma \) immediately dominates \(\delta \), \(\delta \) a BC for \(\beta \).
 (b) \(\gamma \) is a BC for \(\beta \), \(\gamma \neq \text{IP} \).
 b. \(\alpha \) is dominated by \(\beta \) only if it is dominated by every segment of \(\beta \).
 c. \(\gamma \) is a BC for \(\beta \) iff \(\gamma \) is not L-marked and \(\gamma \) dominates \(\beta \).
 d. \(\alpha \) L-marks \(\beta \) iff \(\alpha \) is a lexical category that \(\theta \) - governs \(\beta \).
 e. \(\alpha \theta \) - governs \(\beta \) iff \(\alpha \) is a zero-level category that \(\theta \) - marks \(\beta \), and \(\alpha \beta \), are sisters.

(2) a. \(\alpha \) governs \(\beta \) iff \(\alpha \) m - commands \(\beta \) and there is no \(\gamma \), \(\gamma \) a barrier for \(\beta \), such that \(\gamma \) excludes \(\alpha \).
 b. \(\alpha \) m - commands \(\beta \) iff \(\alpha \) does not dominates \(\beta \) and every maximal projection that dominates \(\alpha \) dominates \(\beta \).
 c. \(\gamma \) excludes \(\alpha \) if no segment of \(\gamma \) dominates \(\alpha \).

(3) In the structure \([\ldots \alpha \ldots [\gamma \ldots \delta \ldots \beta \ldots \ldots]]\), \(\gamma \) is a barrier for \(\beta \) if \(\gamma \) is (a projection, the immediate projection) of \(\delta \), a zero-level category distinct from \(\beta \).

이동은 하나의 장벽을 넘을 수 있으므로 연쇄의 link를 형성하는 두 요소의 관계는 하위인접도 0 또는 1이 되어야 하며, 이동의 결과로 나온 혼적은 공범주 원리를 충족해야 한다.
(4) a. In a well-formed chain with a link \((\alpha_i, \alpha_{i+1}), \alpha_{i+1}\) must be msubja cent to \(\alpha_i, 0 \leq m < 2\).
 b. \(\beta\) is n-subjacent to \(\alpha\) iff there are fewer than \(n+1\) barriers for \(\beta\) that excludes \(\alpha\).

(5) a. ECP: A non-pronominal empty category must be properly governed.
 b. \(\alpha\) properly governs \(\beta\) iff \(\alpha\) \(\theta\)-governs or antecedent governs \(\beta\).
 c. \(\alpha\) antecedent governs \(\beta\) if in a link \((\alpha, \beta)\) of a chain \(\alpha\) governs \(\beta\).

다음 예를 보자.

(6) a. *Who are [IP NP pictures of t] on sale?^{(1)}
 b. *Why did [IP [CP t] [that [IP John was late t]]] disturb Mary?

(7) a. *Who did [IP they [VP leave] [PP before [CP t [IP they saw t]]]]?
 b. *How did [IP they [VP leave] [PP before [CP t [IP you fixed the car t]]]]?

(6)은 주어조건을 위배한 경우로서, (6a)의 NP와 (6b)의 CP가 L-mark되지 않으므로 고유장벽이 되고 IP가 계승장벽이 되므로, who와 why의 이동이 하위인접 조건을 위배한다. 부가어 조건을 위배한 (7)에서는 PP가 L-mark되지 않아서 고유장벽이 되고^{(2)} IP가 계승장벽이 되므로 (7a, b) 역시 하위인접조건을 위배한다. 또, (6), (7)의 (a)의 t는 논항의 혼적으로 S구조에서 \([+\gamma]\)표시되고 중간 혼적은 \(\alpha\)-처리(\(\alpha\)-affect - \(\alpha\))로 제재할 수 있기 때문에 (6), (7)의 (a)는 공범주 원리를 충족한다. 그러나, (b)의 t는 부가어의 혼적으로 LF에서 \([\gamma]\)표시되는데, \(t\)가 의미역 지배되지 않으므로 선행사 지배되어야 하며, 따라서 모든 혼적이 공범주 원리의 적용을 받게 되는 데, \(t\)이 선행사 지배될 수 없기 때문에 공범주 원리를 위배한다. 그 결과, (b)는 하위인접 조건과 공범주 원리를 위배하므로 (a)보다 (b)가 적격성이 낮은 것도 설명할 수 있다.

그런데, Chomsky는 지배와 이동에 대한 국부성 조건을 장벽이라는 하나의 규준으로 통합 정의할 수 있는 것으로 간주하지만, L-marking으로 정의되는

(1) 피의어량 X와 \(\bar{X}\)를 각각 X'과 XP로 표시하기로 한다.
(2) Chomsky(1986)는 (7)과 같은 부가절이 IP에 부가된 것으로 간주한다.
Chomsky (1986)의 장벽과 이를 토대로 한 하위인접 조건 및 공범주 원리는 다음과 같은 문제점을 내포하고 있다.

첫째, CED를 하위인접 조건에 포함시키려면 부가에 대한 특수한 조건을 들 필요가 있다. (6)에서 who와 why가 각각 NP와 CP에 부가되었다가, 모든 CP의 SPEC 위치로 이동한다고 가정하면, (6')에서 보듯이 NP와 CP가 \(t' \)과 \(t'' \)에 대한 장벽이 되지 않으며, IP와 계승장벽이 되지 않기 때문에 이런 이동은 하위인접 조건을 충족하게 되므로 (6a,b)를 적절 구조로 오판하게 된다. 따라서, 이런 이동을 배제하기 위해서 논항에는 부가할 수 없다는 (8)과 같은 제약이 필요하다.

(6') a. \([CP \text{ Who are } [IP[NP \text{ t'' } [NP \text{ t' } [N \text{ pictures of } t]] \text{ on sale}]]\]?
 b. \([IP \text{ Why did } [IP[CP \text{ t'' } [CP \text{ t' } [c' \text{ that } [IP \text{ John was late } t]]] \text{ disturb Mary}]]\]?

(8) Adjunction is possible only to a maximal projection that is a nonargument.

또, (7)과 같은 구조에서 PP는 논항이 아니라 부가이지만 wh-구가 PP에 부가되면 하위인접 조건을 충족하게 된다. 따라서, (7)을 하위인접 조건으로 배제하기 위해서는 부가어에는 부가할 수 없다는 조건이 필요하다.\(^{13}\)

(7) a. \(\text{Who did } [IP \text{ they } [VP \text{ leave }] [PP \text{ t'' } [PP \text{ before } [CP \text{ t'' } [IP \text{ they } [VP \text{ t'} [VP \text{ saw t' }] \ldots\]}}
 b. \(\text{How did } [IP \text{ they } [VP \text{ leave }] [PP \text{ t'' } [PP \text{ before } [CP \text{ t' } [IP \text{ you fixed the car t'} \ldots\]}}

다음과 같은 wh-섬에서 부가어가 이동된 구조나 (6), (7)의 CED를 하위인접 조건 위해로 분석하기 위해서는 wh-구가 IP에 부가될 수 없다는 제약도 필요하다.

(9) a. *\(\text{What_j do you } [VP \text{ t_j' } [VP \text{ wonder } [CP \text{ who, } [IP \text{ t_i } [VP \text{ t_j' } [VP \text{ bought t_j ...}\]}
 b. *\(\text{How_j do you } [VP \text{ t_j' } [VP \text{ wonder } [CP \text{ who, } [IP \text{ t_i fixed the car t_j ...}\]}

(9)에서 CP가 IP로부터 장벽성을 계승하므로 wh-구의 이동이 하나의 장

\(^{13}\) 또, (7 a)에 비해 다음 문의 수용성이 극히 낮다는 사실에서, PP는 부가절에 부가할 수 있으나 NP는 부가할 수 있다는 가정이 필요하다.

* To whom did they leave before speaking t?
벽만 넘게 되는 약한 하위인접 조건 위배가 되는데, (9 b)는 t_i가 실형사 지배
되지 않아서 공범주 원리 위배가 된다. 그런데, (9')처럼 wh-구가 IP에 부
가되면 IP가 (9'a)의 t"과 (9'b)의 t_i를 관할하지 않으므로 BC가 되지 않으
며, 따라서 CP가 계승장벽이 되지 않으므로 이와 같은 WH-이동은 장벽을
하나도 넘지 않는 결과가 된다. (6), (7)에서도 (6''), (7'')과 같이 wh-
구가 IP에 부가되면 IP가 계승장벽이 될 수 없으므로 WH-이동이 고유장벽
하나만 넘게 된다. 따라서, 이와 같은 이동을 하위인접 조건과 공범주 원리로
배제하기 위해서는 wh-구가 IP에 부가될 수 없다는 제약이 필요하다.

(9') a. What do you [VP t_i" [VP wonder [CP who_i [IP t_i [IP t_i [VP
bought t_i ...]

b. How do you [VP t_i" [VP wonder [CP who_i [IP t_i [IP t_i [VP fixed the car

(6'')a. Who are [IP t" [IP [NP t [n' pictures of t]] [on sale]]?
b. Why did [IP t" [IP [CP t [that [IP John was late t]] [disturb Mary]]?}

(7'')a. Who did [IP t" [IP they [VP leave] [PP before [CP t" [IP you [VP t [VP
b. How did [IP t" [IP they [VP leave] [PP before [CP t [IP you fixed the car

이번에는 (9)와 같은 WH-이동이 CP의 SPEC에 부가된다고 가정해 보자.({})

(9'') a. What do [IP you [VP t_i" [VP wonder [CP t_i" [who_i [IP t_i [VP
bought t_i ...]

b. How do you [VP t_i" [VP wonder [CP t_i [who_i [IP t_i fixed the car t_i ...

(9'')에서 what과 how의 이동이 장벽을 하나도 넘지 않게 된다. 이와 같은
이동을 막기 위해 부가된 요소는 다시 이동할 수 없다는 제약을 가정할 수 있
다. 그러나, VP에 부가된 요소는 다시 이동할 수 있으므로, 'CP의 SPEC에
부가된 요소는 다시 이동할 수 없다'는 특수한 제약이 필요하다. 결국,

(4) LF에서 모든 wh-구는 작용역을 갖기 위해 IP 앞에 위치해야 하고, wh-구가
IP나 CP에 부가될 수 없다면 CP의 SPEC에 부가될 수 밖에 없는데, LF에서
CP의 SPEC에 부가할 수 있다면 통상중위에서도 이와 같은 부가가 가능하다고
볼 수 있다.

a. I wonder [CP who_i [e [IP t_i bought what]]]
b. I wonder [CP what_i [who_i [e [t_i bought t_i]]]
Chomsky(1986)의 하위인접 조건은 (1) 논향에 부가 불허, (2) 부가어에 부 가 불허, (3) wh-구를 IP에 부가 불허, (4) CP의 SPEC에 부가된 요소의 이동 불허 등의 별개적인 특수한 제약을 필요로 한다.

둘째, (10) - (12)와 같은 strong violation의 경우 공범주 원리의 위배는 장벽 하나만 있어도 strong violation을 야기하지만, 하위인접 조건의 경우 장벽이 두 이상 개설될 때 strong violation이 된다는 비대칭성이 있다. 또, 비는 향의 혼적이 하위인접 조건을 위배하여 strong violation이 되는 경우, 반드시 공범주 원리를 위배하게 되므로 공범주 원리와 하위인접 조건이 엇갈리므로 적 용된다.

(10) Subject Island:
 a. * Which books will [[talking about t] be prohibited]?
 b. * How would [[to behave t] be inappropriate]?

(11) Adjunct Island:
 a. * To whom did you leave [[PP without [speaking t]]]?
 b. * How was he fired [[PP after behaving t]]?

(12) Complex NP Island:
 a. * To whom have you found [[NP [[NP someone] [CP who would speak t]]]?
 b. * How have you found [[NP [[NP someone] [CP who fixed the car t]]]?

셋째, 모든 최대 투사범주가 L-mark되지 않으면 고유장벽이 되지만 IP는 예외적으로 고유장벽에서 제외시키는 특수한 단서를 두고 있다.
먼저, 핵지배와 선행자 지배의 경우를 보자.

(5) strong islands에 비해 다음과 같은 weak islands에서 논향의 이동은 수용성이 높 은 높거나 적절 구조가 된다.

(1) wh - islands:
 a. ?? To whom didn’t they know when to give their present t?
 b. * How did they ask you who behaved t?

(2) Inner islands:
 a. To whom didn’t you speak t?
 b. * How didn’t you behave t?

(3) Extraposition islands:
 a. To whom is it time to speak t?
 b. * How is it time to behave t?

(4) Factive islands:
 a. To whom do you regret that you could not speak t?
 b. * How do you regret that you behaved t?
(13) a. John decided [CP e [IP PRO to see the movie]]
 b. *How did Bill [VP, t' [VP wonder [CP e [IP, John fixed the car t]]]]?

(13)에서 IP는 비록 L-mark되지 않지만 고유장벽이 아닌 것으로 간주되므로, (13a)의 PRO와 (13b)의 t가 각각 decide와 t에 의해 지배되지 않도록 CP를 제승장벽으로 간주한다. 결국, 지배에서 제승장벽이 필요한 것은 IP를 결합법주로 예외시하기 때문인데, IP도 다른 범주와 같이 L-mark되지 않으면 장벽이 되는 것으로 가정하면 지배에서 제승장벽이라는 개념은 임의적이다.

다음으로, 부가어 조건을 위배한 (7)의 구조를 다시 보기로 하자.

(7) a. *Who did [IP they leave [FP before they saw t]]?
 b. *How did [IP they leave [IP before you fixed the car t]]?

Chomsky는 부가어 PP가 IP에 부가된 것으로 간주하기 때문에, L-mark되지 않은 PP가 고유장벽이 되고 IP가 제승장벽이 되어 하위인접 조건을 위배한 것으로 분석한다. 그러나, 다음 (14), (15)와 같이 VP가 전치되거나 삭제 또는 대치된 구조를 보면 PP가 IP에 부가된 것이 아니라 VP의 일부라고 보는 것이 타당하다.

(14) a. Bill said that John would go home before he saw Mary, and go home before he saw Mary he certainly did t.
 b. *Bill said that John would go home before he saw Mary, and go home he did t before he saw Mary.

(15) a. John went home before he saw Mary, and Bill did e too.
 (e=go home before he saw Mary)
 b. They left before speaking to John, and I did so too.
 (so=leave before speaking to John)

(7)과 같은 구조에서 PP가 VP에 부가되어 있고 wh-구가 VP에 부가된 후 CP의 SPEC으로 이동하면, (7)에서 보듯이, IP2가 제승장벽이 되지 않는다는. 따라서, (7a)의 이동은 고유장벽 PP 하나만 넘게 되며 t가 의미의 지배되어 공범주 원리로 충족한다. (7b)의 이동 역시 하나의 고유장벽만 넘지만 t가 선행사 지배되지 않아 공범주 원리를 위배한다.

(7″) a. Who did [IP2 they [VP t″ [VP leave [CP t ″ [IP they [VP, t ′ [VP, saw t ′]]]]]]]
 b. How did [IP2 they [VP, leave [IP, before [CP t ′ [IP you fix the car t ′]]]]]
그렇다면, (6), (7)의 (a)를 비교해 볼 때, 주어조건을 위배한 (6a)의 이 동은 두 개의 장벽을 넘은 반면, (7a)의 부가어 이동은 하나의 장벽을 넘게 되는 바가 생긴다. 따라서, (6a)가 (7a)보다 적격성이 낮아야 하며, (7a)는 (16)과 같은 위반 한국 조건 위배가 되어야 하는데 그렇지 않다.

(16) *? What do you [VP t] [CP wonder [IP t] [IP t] [VP bought t]…

(7a)와 (16)의 이동이 각각 하나의 장벽을 넘었음에도, (7a)는 강한 위배가 되는 반면 (16)은 약한 위배가 된다면 Chomsky (1986)의 장벽으로는 하위 인접 조건을 위배한 strong violation과 weak violation을 구분할 수 없게 된다. 이와 같은 결과는 L - mark 안된 IP가 BC는 될 수 있으나 고유장벽이 아닌 것으로 IP를 예외시하는 데서 온다.

Chomsky (1986)의 장벽체계에서는 하위인접 조건 위배가 되려면 최소한 두 개의 장벽이 필요하며, 계승장벽이 하위인접 조건에 필요한 장벽을 추가하게 되므로 하위인접 조건에 계승장벽이 결정적 역할을 하는 것으로 볼 수 있다. 그런데, (7’’)에서 보았듯이 IP가 계승장벽이 되지 않음에도 Chomsky는 (7a)를 하위인접 조건 위배로 분석한다. 결국, (7)과 같은 CED를 위배한 구조를 하위인접 조건 위배로 분석하는 것은 strong islands에는 고유장벽 하나만 있어도 하위인접 조건 위배가 되며, 하위인접 조건의 인접도는 1이 아니라 0이라는 결과가 된다. 그러면, (10) - (12)와 같은 strong islands 위배에서도 하나의 고유장벽이 하위인접 조건 위배를 유발하는 것으로 가정할 수 있으며, 계승장벽을 추가로 설정할 필요가 없다고 볼 수 있다.

넷째, Chomsky (1986)는 핵의 영역 내에 있는 요소가 외부로부터 지배될 수 없게 함으로써 어떤 요소가 중복 지배되는 것을 막고, 고유장벽에 관계 없이 N의 보충어인 CP에서 부가어를 이동하던 부적격 구조가 파생되는 것을 공범주 원리로 배제하기 위해 최소성 조건을 두고 있다. 그런데, 고유장벽과 계승장벽은 지배와 이동에 관련하는 반면 최소장벽은 지배에만 관여하기 때문에, 이동과 지배의 국부성 조건을 설정하는 장벽이 이원화되어 있으며, 최소성 조건은 다음과 같은 문제점을 내포하고 있다.

(17)과 같은 구조에서 C’과 N’은 형상구조상 최소장벽이 되어야 할에도 (17a)의 C’은 최소장벽이 되는 반면 (17b)의 N’은 최소장벽이 되지 않는다.

(17) a. *Who do you [VP t] [CP t’ [C’ that [IP t would win]]] b. [NP the city’s [N’ destruction t]]
또, N의 보충어인 CP에서 보충어를 이동할 때 비록 최소장벽을 넘게 되지만 최소장벽은 이동을 차단하는 장벽이 아니며, 이동을 차단하는 고유장벽이나 계승장벽을 하나도 넘지 않음에도 약한 섬위배 현상을 보인다.

(18) a. ??Which book did John [VP tv'] [VP announce [NP [N' a plan [CP t'' [for you to [VP t'] [VP read t']]]
 b. * How did John [VP t'] [VP announce [NP [N' a plan [CP t'] [to fix the car t']]

(18)의 WH-이동은 이동을 차단하는 장벽을 하나도 넘지 않았기 때문에 하위인접 조건을 충족한다. 그런데, 최소장벽 때문에 t"이 선행자 지배되지 않는 (18b)는 공명주 원리로 설명되지만, (18a)의 t는 의미적 지배되어 [+Y]표시되고 중간 흔적들은 LF에서 삭제될 수 있으므로 공명주 원리를 충족하는데도 (18a)는 적격 구조가 될 수 없는데, Chomsky(1986)의 하위인접 조건과 공명주 원리로는 이를 설명할 수 없다. 따라서, Chomsky는 Stowell의 주장대로 PRO를 제외한 모든 공명주가 공명주 원리를 준수하며 (19)처럼 CP의 핵이 삭제되면 부적격 구조가 되는 경우, CP가 지배에 대한 장벽이거나, 아니면 명사가 사격을 부여하고 이것이 지배에 대한 고유장벽성을 부여할 수 있다는 가정을 한다.

(19) a. *John expressed the feeling [CP e [IP the meeting should not be held]]
 b. John expressed the feeling [CP that [IP the meeting should not be held]]

비록 (19a)의 CP가 지배에 대한 장벽이 되는 것으로 간주하여 (19a)는 공명주 원리 위배로 설명할 수 있다고 하더라도, Chomsky는 (18), (19)의 복합명사구성 제약 위배를 약한 하위인접 조건 위배로 간주하기 위해서, 이런 CP를 고유장벽으로 취급하기 위해서는 N이 L - mark할 수 있는 범주가 아니라는 가정이 필요하며, 그렇 경우 Chomsky(1986)의 L - marking은 수정을 요한다.

또, 다음과 같은 구조에서 V', A', I', C' 등이 최소장벽을 형성하지 않도록 하기 위해, Chomsky는 V'와 A'는 SPEC이 없으면 삭제하고 that 같은 C는 LF에서 삭제하는 반면, I'은 결합명주기 때문에 최소장벽이 되지 않는 것으로 간주한다.

(20) a. Who [C' do [IP you [t' [VP tv'] [VP want [CP t'' [C' to [VP t'] [VP meet t']]
 b. Who is [AP [A' certain [IP t to go]]]
 c. Who do you think [CP t'' [C' that [IP Bill [VP t'] [VP saw t']]]]
 d. I wonder what [IP he [t' [VP t'] [bought t']]]
그러나, 이와 같은 분석은 상호 연관성이 없는 별개적인 단서를 둔 것에 불과하며, Chomsky(1986)는 이 내가지 별개적인 요소들이 왜 한결같이 선행사 지배 또는 형제배를 차단하는 최소장벽이 되지 않는가에 대한 보편적인 이유를 명확하게 제시하지 못하고 있다.

다섯째, Chomsky(1986)의 장벽이론은 다음과 같은 구조를 설명하는데 문제가 있다.

(21) a. * Who did you [VP t' [VP see [NP Mary and t]]]?
 b. I saw Tom and Mary / her
 c. * Whose did you [VP t' [VP see [NP t pictures]]]?

(21a)의 NP는 see에 의해 L-mark되어 고유장벽이 아니며, who의 이동이 하위일정 조건을 충족한다. 그러므로, (21a)와 같은 구조를 배제하기 위해서는 t가 공범주 원리를 위배한 것으로 볼 수 있는데, t가 t'에 의해 선행사 지배되지 않거나 see에 의해 \(\theta \)-mark되지 않는 것으로 분석하기 위해서는 C (and)가 최소장벽을 형성하는 것으로 가정할 수 있다. 그러나, C를 최소지배 자로 간주할 경우 (21b)의 Mary / her가 see에 의해 지배되고 격표시되는 현상은 설명할 수 없다. (21c)의 NP도 L-mark되어 장벽이 되지 않으므로 t'이 t를 선행사 지배하여 공범주 원리를 충족하고 whose의 이동이 하위일정 조건을 충족하는데도 부적격 구조가 된다.

여섯째, 다음 (22a)는 N이 L-marker가 아니라고 가정함으로써 PP가 고유장벽이 되고 NP가 계승장벽이 되어 하위일정 조건을 위배한 것으로 분석할 수 있다. 그러나, (22b)에는 이런 장벽이 없으므로 하위일정 조건과 공범주 원리를 충족해야 함에도 부적격 구조가 된다. 그런데, (23)은 적격 구조이기 때문에 Chomsky는 (22)와 (23)의 차이가 (24)와 (25)의 차이와 같은 특정성 조건 (specificity condition)과 관계가 있을 것이라는 제안만 하고 설명은 않고 있다.

(22) a. * Which city did you [VP t' [VP meet [NP the [N' man [PP from t ...]]]
 b. * From which city did you [VP t' [VP meet [NP the [N' man t ...]]]

(23) a. This is the city that I met [NP three people [PP from t ...]]
 b. This is the city that I met [NP more people [PP from t ...]]

(24) a. * Who did you see [NP that [N' picture of t]]?
 b. * Who did you see [NP John's [N' picture of t]]?
(25) a. Who did you see [NP three pictures of t]?
 b. Who did you see [NP more pictures of t]?

이런 가정 하에서는 the, that, John’s 등은 지정어(specifier)인 반면에, three, more 등은 지정어가 아니라 양화사로 간주하여 (22) - (25)의 적격 구조 에서의 WH - 이동은 NP의 지정어 위치로 이동했다가 VP에 부가된 것으로 볼 수 있다.

(26) a. *WH ... [VP t' [VP [NP the / that / John’s [N’ picture [PP of t ...]
 b. WH ... [VP t’ [VP [NP t’ [N’ three / more pictures [PP of t ...]

(26b)와 같은 구조를 수용하는 반면 (26a)와 같은 구조를 배제하기 위해서 는, N이 L - marker가 아닌 것으로 간주하여 (26a)의 이동은 고유장벽 PP와 계승장벽 NP 때문에 하위인접 조건을 위배하는 반면, (26b)에서는 하나의 장벽만 남았으므로 하위인접 조건을 충족하는 것으로 분석하던가, 아니면 (26b)의 t는 t에 의해 진행자가 지배되는 반면 (26a)는 t가 진행자가 지배되지 않아서 공범주 원리를 위배한 것으로 가정할 수 있다. 그러나, 전자의 경우 L - marking 을 수용해야 하고, 후자의 경우에는 NP가 최소장벽이 되도록 최소성 조건을 수용할 필요가 있다. 61

일곱째, Chomsky는 다음 (27)과 같은 약한 하위인접 조건을 위반한 구조에 서 (a) - (d) 공히 하나의 장벽(계승장벽 CP)을 넘었음에도, (27a, b)가 (27c, d) 보다 수용성이 낮다는 사실에서 가장 값이 내포된 시제 있는 IP가 WH - 이 동에 (약한) 고유장벽이 되는 것으로 간주함으로써 L - marking과 최소성 조 건으로 정의되는 장벽과는 다른 특수한 장벽을 또 하나 추가하고 있다.

(27) a. *? What did you wonder [CP to whom [IP John gave t t]]?
 b. *? To whom did you wonder [CP what [IP John gave t t]]?
 c. ?? What did you wonder [CP to whom [IP to give t t]]?
 d. ?? To whom did you wonder [CP what [IP to give t t]]?

이와 같은 장벽을 추가할 경우, (27a, b)의 WH - 이동은 두 개의 장벽을 넘 게 되므로 하위인접 조건을 위배하는 것으로 분석할 수 있다. 그러나, 이 장벽 은 가장 값이 내포된 시제 있는 IP에 국한된다는 특이성이 있다. 그렇지 않음 경우, (28)과 같은 적격 구조를 빈으로 오판하게 된다. 왜냐하면, Chomsky

(6) (17b)에서 보았듯이 (26b)의 N’는 t에 대한 최소장벽이 되지 않는다.
는 하나의 이동순환에서 하나의 장벽만 넘었다 하더라도 이런 이동이 누적되면 수용성이 낮아지는 것으로 간주하므로, 시계 있는 IP가 모두 장벽이라면 (28)의 이동은 3개의 장벽을 넘는 결과가 되기 때문이다.

또, 이 장벽은 지배와는 아무런 관계가 없고, 오직 하위인절 조건에 국한되며, 부가어 이동은 하나의 장벽만 있어도 공범주 원리를 위배하기 때문에 부가어의 이동에는 아무런 영향을 주지 못하는 특수한 장벽이라는 문제가 있다.

여덟째, 공범주 원리가 의미의 지배 또는 선행사 지배라고 하는 전략 별개적인 성격의 두가지 개념에 의해 이질적으로 정의되고 있으며, 다음과 같이 t가 의미의 지배되어 공범주 원리를 충족하는데도 비문이 되는 경우가 있으므로, Chomsky도 자신의듯이, 고유지배 요건을 수정할 필요가 있다.

(29) * Mary seems t’ to be likely John to love t.

아홉째, 명사구 이동은 VP에 부가될 수 없기 때문에 VP가 장벽이 되므로, 명사구 흔적이 공범주 원리를 충족하는 것으로 분석하기 위해 Chomsky는 SPEC - head 호응과 head - head 호응에 의한 확대연쇄를 가정하고, 호응의 link도 선형사 지배를 충족하는 것으로 간주한다.

(30) a. C = (α₁, ⋯, αₙ, β) is an extended chain if (α₁, ⋯, αₙ) is a chain with index i and β has index i.
 b. Chain coindexing holds of the links of an extended chain.

그러면, 다음 (31a)의 t_i가 be의 흔적이 t_j에 의해 선형사 지배되고 (31b)의 t_i 가 killed에 의해 선형사 지배되다는 분석은 직관적으로 극히 부자연스럽고, 과연 이런 확대연쇄와 선형사 - 흔적이 연쇄를 선형사 지배라는 하나의 유형으로 통합할 수 있는가 하는 의문을 제기한다.

(31) a. John, [t’ [be₂T₁]i, [VP t₁ [VP killed t_j]]]
 b. John, will, be₁, killed₁, t₁
3. Chomsky (1987)의 수정 장벽이론과 그 문제점

(32) a. In the structure, \(\cdots a \cdots [\gamma \cdots \beta \cdots] \), \(\gamma \) is a barrier for \(\beta \) iff \(\gamma \) is not H-marked or L-marked.
b. \(a \) H-marks \(\beta \) iff \(\beta \) is a complement of \(a \).
c. \(a \) L-marks \(\beta \) iff \(a \) is lexical and \(\beta \) is the immediate constituent of \(\gamma \) H-marked by \(a \).

(33) \([a, \gamma]\) is a barrier for \(\beta \) iff

(i) \(a \) is a minimal category containing a maximal projection \(\gamma \) and a head \(\delta \).

(ii) \(\beta \) is included in the complement of \(\delta \) and \(\gamma \).

(iii) \(a \) may count as \(\gamma \) if \(a = XP \).

또, Chomsky (1987)는 수정된 장벽이론을 토대로 의미역 지배 또는 선행사 지배로 이어접적으로 정의된 고유지배 요건에서 의미역 지배를 분리하여 L-지배 조건으로 독립시키고, 공범주 원리에 선행사 지배 요건만을 두는 한편, 공범주 원리를 연쇄의 link에 관한 원리로 바꾸었는데, link는 혼격과 선행사의 관계 뿐 아니라 호응의 link도 포함한다.

(34) A trace must be L-governed.

(7) 이 때의 include는 일부를 포함하거나 동일한 경우도 포함된다.
(35) ECP: Every link of a chain must be antecedent governed.

이에 따라 흔적은 공범주 원리 뿐 아니라, L - 지배 조건을 충족해야 하는데, 어떤 요소가 공범주 원리를 충족할 때 \([+Y] \) 표시되는 것으로 본다.

먼저, 다음과 같은 예를 보자.

(36) a. I decided [CP [c' e [IP PRO to go]]]
 b. * Who do you think [CP t' [c' that [IP t left]]]?
 c. Who [c] do [IP you [VP t' [VP think [CP t' [c' e [IP t left...]
 d. Why [c] do [IP you [VP t' [VP think [CP t' [c' that [IP he resigned t...

(36a)에서 CP와 IP는 각각 \(V(\text{decide}) \)와 \(C(e) \)에 의해 H - mark되므로 고유 장벽이 되지 않지만, \([C', IP]\)가 최소장벽이 되어 PRO가 지배되는 것을 차단한다. (36b)에서도 \([C', IP]\)가 최소장벽이 되어 \(t \)가 행위사 지배되지 않으므로 공범주 원리를 위반한다. 그런데, (36c)는 적격 구조이므로 \(t \)가 행위사 지배되는 것으로 분석되어야 하며, 그러기 위해서는 특수한 가정이 필요하다. 만약, \(C \)가 공범주일 때 \(C' \)이 삭제된다고 가정하면 \(t \)가 대상 최소장벽은 CP가 되므로, \(t \)가 \(t' \)에 의해 행위사 지배될 수 있다. 그런데, (36d)의 \(t \)는 \(t' \)에 의해 행위사 지배되어야 하는데, (36d)는 \(C(\text{that}) \)의 유무에 관계 없이 정문이 된다.

Chomsky처럼 논항의 흔적은 \(S \)구조에서 \([Y] \)표시되고 부가어의 흔적은 LF에서 \([Y] \)표시되는 것으로 보면 (36c)와 (36d)의 차이를 설명하기 위해 공범주인 \(C \)는 \(S \)구조에서, that은 \(LF \)에서 삭제되어야 한다는 단서가 필요하다.\(^{(8)}\) 만약, 논항의 흔적과 부가어의 흔적의 과정의 원의 단계에서 \([Y] \)표시된다고 하면, (36b)와 (36d)의 차이를 설명하기 위해 논항 흔적과 부가어 흔적에 대해 최소장벽을 형성할 수 있는 \(C \)의 삭제 여부에 대한 특수한 조건을 설정해야 한다.

논항의 중간 흔적은 LF에서 삭제되는 반면, 부가어의 중간 흔적은 삭제될 수 없기 때문에, (36d)의 모든 흔적은 공범주 원리를 충족하기 위해 행위사 지배되어야 하는데, \(C' \)이 삭제되지 않는다고 하면 \([C', IP]\)가 최소장벽이 된다.

\(^{(8)}\) 만약 공범주인 \(C \)는 \(C' \)을 투사하지 않는다고 가정하면 IP가 H - mark되지 않아 고유장벽이 되므로, 공범주 C도 \(C' \)을 투사하는 것으로 파야 한다.
[C', IP]가 최소장벽이 되는 것은 IP 때문에므로 IP가 장벽을 형성하는 요인이 되지 않도록 하기 위해, Chomsky(1987)는 (36d)의 `t가 선행사 지배 요건을 충족하도록 하기 위해 LF에서 VP가 IP에 부가되는 것으로 가정한다. (9)

(36d) Why [C' do [IP you [VP t' [CP t' [C' e / that [IP [VP t' [VP resigned t]]] [IP he t] ...]

(36d)에서 VP와 IP가 t'을 관할하지 않으므로 C'은 t'에 대한 최소장벽을 형성하지 않으며, t''이 t'을 선행사 지배하고 t_j 역시 VP_j에 선행사 지배된다. Chomsky(1987)는 다음 (37)이 부적절 구조가 되는 것은 how가 관계절 VP에 부가된 후 IP에 부가되고, 이 IP가 만만 IP에 부가될 때, how, t'', t'이 각각 t'', t', t를 선행사 지배하여 공법주 원리에 충족하지만 t_j가 L - 지배되지 않기 때문인 것으로 분석한다. (10)

(37) a. * How did you find [NP [N' a car] [for Mary to fix t]]
 b. * How did [IP [IP t' [IP Mary to [VP t' [VP fix t]]]] [IP you find [NP [N' a car] [CP for t_j]]]

그런데, (36d')에서 모범의 [C', IP]가 최소장벽이 되지 않도록 (37b)와 같이 IP를 모범 IP에 부가하면 IP의 혼적이 L - 지배 조건을 충족할 수 없는데도 (36d')은 (37)과는 달리 적절 구조가 된다는 문제점이 있다.
또, 다음 (38)은 주어의 혼적이 L - 지배될 수 없는데도 적절 구조가 된다.

(38) a. Who [C' did [IP you [VP t' [VP think [CP t' [C' e [IP t would win the race ...]]]
 b. Who [C' did [IP [IP t would win the race]] [IP you [C' [VP t' [VP think [CP t' [C' e t_j ...]]]

(38a)에서는 t가 비록 C(e)에 의해 지배되지만 C는 L - 지배자가 아니므로 L - 지배 조건을 충족할 수 없으며, (38b)처럼 내포문 IP를 모범 IP에 부가하지

(9) Chomsky는 fix the car, he will t 같은 구조가 적절 구조이므로, VP - 전치가 가능하며, 통사계층에서 가능한 규칙은 LF에서도 적용할 수 있다는 논리로 LF에서의 IP부가를 가정한다.
(10) L - 지배 조건은 핵의 보충어인 혼적이 그 핵으로부터 의미역 지배되어야 한다는 조건이다. C는 보충어인 IP를 의미역 표시할 수 없기 때문에 L - 지배자가 될 수 없다.
* He will win, I think that t.
다라도 틀감.L 지배될 수 없다.
다음으로 보충어인 NP와 CP에서의 음동을 생각해 보자.

(39) a. Who [C′ did [IP you [VP t″ [VP see [NP t′ [N′ pictures [VP] of t″ [VP].
 b. Who do you [VP t″ [VP think [CP t″ [C′ that [IP John [VP] t‴ [VP saw t″ [VP.
 c. For which reason do you [VP t″ [VP think [CP t″ [C′ [IP he [VP] t‴ [VP]
 fixed the car t″ [VP.
 d. ?? Which book [C′ did [IP you [VP t‴ [VP believe [NP t″ [N′ a rumor [CP]
 t″ [C′ that [IP John [VP] t‴ [VP lost t″ [VP].

(39a)에서 t″으로의 음동은 두개의 장벽([VP, VP]와 [VP, NP])을
 넘게 되고 t″에서 문두로의 이동 역시 최소장벽 [C′, IP]를 넘게 되므로 하위
 인접 조건을 위배하는데도 (39a)는 정문이 된다.((11) 또, [N′, PP]가 최소장벽
 을 형성할 수 있는 구조임에도 t에 대한 최소장벽은 N′이 아니라 NP가 되어야
 하는데, 이때 N′이 최소장벽을 형성하지 않도록 하는 장치가 필요하다. (39b)
 에서는 t″으로의 이동이 최소장벽 [C′, IP]를 넘고, t″에서 t‴으로의 이
 동이 최소장벽 [VP, VP] [VP, CP]를 넘게 되며, t‴에서 문두로의 이동에
 서도 [C′, IP]를 넘어서 하위 인접조건을 위배하는데도 적격문이 된다. (39c) 역
 시 for which reason과 t‴ 사이에 [C′, IP], t‴과 t″ 사이에 [VP, VP], [VP,
 CP], t‴과 t″ 사이에 [C′, IP]라는 장벽이 있어도 적격 구조가 된다. (39d)와
 같은 N의 보충어에서의 이동도 t″과 t″ 사이에 장벽 [C′, IP]가 있고, t‴과 t″
 사이에 [N′, CP], t‴과 t″ 사이에 [VP, VP], [VP, NP], t‴과 which book
 사이에 [C′, IP] 등 5개의 최소장벽이 있으므로 수용 불가능한 문이 되어야
 하는데, (39d)는 약한 하위인접 조건을 위배할 따름이다.

다음으로 (40)과 같은 구조를 보자.

(40) a. [CP Who [IP t i likes John]]?
 b. * Who [C′ does [IP t i t j [VP like John]]]?
 c. [C′ Will [IP he [t i t j [VP like John]]]?

(40a)에서 who의 이동은 최소장벽 [C′, IP]를 넘게 되므로, who가 IP에 부
 가되어 CP의 SPEC으로 이동한다고 가정할 수 있다. 그렇다면, (40b)에서도
 who의 이동은 장벽을 하나도 넘지 않게 된다. 또, 정문인 (40c)을 볼 때, IP
 는 H-mark되어 고유장벽이 아니고 will과 t″ 사이에는 최소장벽이 없으므로

(11) (36d)처럼 VP나 IP에 부가하는 것은 LF부가하기 때문에, S구조의 하위 인접
 조건과는 관계가 없다.
4. 국부성 조건의 수정 대안

이상에서 살펴보았듯이, 장벽체계에 의거하여 설정된 Chomsky의 국부성 조건은 부가에 대한 특수한 제약을 추가해야 하고, X’-계층의 범주들이 최소 장벽을 형성하지 않도록 하는 별개한 조건이나 단서가 필요하다. 본 장에서는 Chomsky의 고유장벽과 Rizzi의 상대적 최소장벽을 지배와 이동에 대한 장벽으로 간주하고, Chomsky의 L-지배조건과 Rizzi의 고유 핵지배조건을 수정하여 하위인접 조건과 공범주 원리를 통합할 수 있는 국부성 조건을 설정해 보기로 한다.

(41) a. A maximal projection is a barrier if it is not H-marked.
 b. \(\alpha \) H-marks \(\beta \) iff \(\beta \) is a complement of \(\alpha \).

(41)의 고유장벽은 주어조건, 부가어 조건, 복합명사구 조건 등을 위배한 이동이 부적격 구조가 되는 것을 설명할 수 있다.

(42) a. * Of whom are \([_{IP_{NP}}\ \text{pictures} \ t] \ \text{on sale}\)?
 b. * Why did \([_{IP_{CP}} \ t\prime \ [_{IP \text{John was late} \ t}]] \ \text{disturb} \ Mary\) ?

(43) a. * To whom did you leave \([_{PP} \ \text{without speaking} \ t]\) ?
 b. * How was he fired \([_{PP} \ \text{after behaving} \ t]\) ?

(44) a. * How have you found \([_{NP_{NP \ \text{someone}}} \ [_{CP \ \text{who fixed the car} \ t}]] \) ?
 b. * To whom have you found \([_{NP_{NP \ \text{the man}}} \ [_{CP \ \text{who would speak} \ t}]] \) ?
주어조건을 위배한 (42)에서는 NP와 CP가 H-mark되지 않으므로 고유강력이 되고, 부가어 조건을 위배한 (43)에서는 PP가 H-mark되지 않으며, (44)와 같이 복합명사구 제약을 위배한 경우에는 관계절 CP가 H-mark되지 않아서 고유장력이 된다.

이처럼 해석에 의해 H-mark되는 최대 부사법주는 고유장력이 되지 않는 것으로 보면, (45)와 같은 구조에서 VP와 IP는 각각 I와 C에 의해 H-mark되므로 VP와 IP가 장력이 되지 않도록 하기 위한 부가이동을 가정할 필요가 없으며, 따라서 부가에 대한 특수한 조건도 불필요하게 된다.

(45) \[\text{CP} \quad \text{C'} \quad \text{IP} \quad [i' \quad I \quad [\text{VP} \quad \ldots]] \]

또, 부가이동이 불가능한 NP-이동에서 VP의 장력성을 해소하기 위해 \(V_1\) 가 VP를 L-mark한다는 가정이나 확대연쇄 형성에 의한 연쇄동치표로 NP 혼적이 선형자 지배될 수 있다고 하는 특수한 유형의 선형자 지배를 가정할 필요도 없다.

그러나, (41)의 장력으로는 다음 (46)- (48)과 같은 wh-설 조건을 위배한 WH-이동과 해석, NP-이동 등을 설명할 수 없다.

(46) a. *How, do you wonder \([\text{CP} \quad \text{which problem} \quad [\text{IP} \quad \text{to solve} \quad t_i \quad t_j]]\)?
 b. *Why, do you wonder \([\text{CP} \quad \text{who} \quad [\text{IP} \quad [t_i \quad \text{fixed} \quad \text{the car} \quad t_j]]\]?

(47) a. \([\text{C'} \quad \text{Could}, \quad [\text{IP} \quad \text{they} \quad [i' \quad t_i \quad [\text{VP} \quad \text{have} \quad \text{left}]]]]\)?
 b. *\([\text{C'} \quad \text{Have}, \quad [\text{IP} \quad \text{they} \quad [i' \quad \text{could} \quad [\text{VP} \quad t_i \quad \text{left}]]]]\)?

(48) a. Mary, seems \([\text{IP} \quad t_i' \quad \text{to be certain} \quad [\text{IP} \quad t_i \quad \text{to love} \quad \text{John}]]\)
 b. *Mary, seems \([\text{IP} \quad t_i' \quad \text{to be certain} \quad [\text{IP} \quad \text{John to love} \quad t_i]]\)

Chomsky(1987)는 (46)과 (47b) 같은 부적절 구조는 최소장력으로, (48b)는 확대연쇄 동치표에 의한 선행자 지배로 설명하는데, Chomky의 최소장력과 연쇄동치표에 의한 선행자 지배는 이미 지적한 바와 같이 문제점을 내포하고 있다. 이에 본고에서는 Chomsky의 최소성 조건 대신 (46)- (48)을 동일한 원리로 설명할 수 있는 Rizzi의 상대적 최소성 조건(relativized minimality)을 최소장력으로 간주한다.

(49) Relativized Minimality: \(X \ a\)-governs \(Y\) only if there is no \(Z\) such that
 (1) \(Z\) is a typical potential \(a\)-governor for \(Y\), and
(Ⅱ) Z c-commands Y and does not c-command X.
(σ = head / antecedent)

(50) a. Z is a typical potential head governor for Y if Z is a head m-c-commanding Y.
 b. Z is a typical potential antecedent governor for Y, Y in an A-c-chain if Z is an A-c-specifier c-commanding Y.
 c. Z is a typical potential antecedent governor for Y, Y in an A′-chain if Z is an A′-specifier c-commanding Y.
 d. Z is a typical potential antecedent governor for Y, Y in an X°-chain if Z is a head c-commanding Y.

(51) a. σ head governs β iff
 (Ⅰ) σ ∈ (A, N, P, V, Agr, T),
 (Ⅱ) σ m-commands β,
 (Ⅲ) No barrier intervenes,
 (Ⅳ) Relativized Minimality is respected.
 b. σ antecedent governs β iff
 (Ⅰ) σ and β are coindexed,
 (Ⅱ) σ c-commands β,
 (Ⅲ) No barrier intervenes,
 (Ⅳ) Relativized Minimality is respected.

이 상대적 최소성 조건에서는 지배자와 피지배자 사이에 잠재적 지배자가 될 수 있는 요소가 있을 때, 이런 요소는 동일한 성격의 지배에 대해서만 장벽이 된다. 즉, 핵지배에는 핵이 잠재적 지배자가 되고, 선행사 지배에서는 A-연쇄에서는 A-SPEC이, A′-연쇄에서는 A′-SPEC이, X°-연쇄에서는 핵이 잠재적 지배자가 된다. 따라서, (46)의 A′-연쇄에서는 A′-SPEC인 which problem과 who가 선행사 지배를 차단하고, (47b)의 핵연쇄에서는 핵이 could가 상대적 최소장벽이 된다. (48b)에서는 A-SPEC인 John이 A-연쇄의 선행사 지배를 차단하는 장벽이 된다. 이처럼 (49)의 상대적 최소성 조건은 Chomsky의 최소성 조건에 비해 간결하면서도, 부가제약이나 LF-이동 등과 같은 특수한 조건이나 단서를 두지 않고 각종 섬유배 현상이나 핵지배 현상을 동일한 원리로 설명할 수 있는 장점을 있다.

Chomsky의 국부성 조건에서는 모든 혼적이 S구조에서 하위인접 조건의 적용을 받지만, 논항의 중간 혼적들은 LF에서 삭제되고 최초의 혼적만 공법주 원리의 적용을 받는 반면 부가어의 혼적은 모두 공법주 원리를 충족해야 하므로, 부가어의 혼적에 대해서는 하위인접 조건과 공법주 원리가 일치적으로 적용된다. 이와 같은 잉여성을 배제하기 위해 일단 모든 혼적이 선행사 지배 요건을 충족해야 하는 것으로 가정해 보자.
(52) ECP: Every trace must be antecedent governed.

(53) α antecedent governs β iff

(i) α and β are coindexed,
(ii) $\alpha \cdot$ commands β,
(iii) No barrier intervenes.$^{[12]}$

(54) a. Johni appears [IP t_i to be happy]
 b. Why, do you prefer [CP t_i [C' for [IP John to win t_j]]]?

(55) a. * Johni's appearance [IP t_i to be happy]
 b. * Why, did John announce a plan [CP t_i [IP to fix the car t_j]]?

(56) a. * Who, do you think [CP t_i [C' that [IP t_i is honest]]]?
 b. * Who, would you prefer [CP t_i [C' for [IP t_i to win]]]?

(54) - (56)에서 연쇄의 각 link에 (41)의 고유장벽과 (49), (50)의 상대적
최소장벽이 제재하지 않음에도 (54)와는 달리 (55), (56)은 부적격 구조가 되
고 있다. (54)와 (55), (56)을 비교해 볼 때, (54)의 t는 V나 I에 의해 핵지배
되는 반면 (55a)의 t와 (55b)의 t'은 N에 의해 핵지배되고 (56)의 t는 C에 의해
핵지배된다. 따라서, 혼돈은 신행사 지배되는 것만으로는 충분치 않고 적절한
범주에 의해 핵지배되어야 한다고 볼 수 있다.

(57) Every trace must be antecedent governed and head governed.

(55), (56)에서 C와 N은 적절한 핵지배자가 아니라고 생각할 수 있는데, C
가 적절한 핵지배자가 아님은 다음과 같은 예에서도 확인된다.

(58) a [Go home], I think he [t_i will t_j]
 b. * [He would go home], I think [C' that t_j]

그런데, 다음 (59)를 보면 t가 C에 의해 핵지배되지만 (56), (58b)와는 달리
적격 구조가 된다.

$^{[12]}$ 이때의 장벽은 고유장벽과 상대적 최소장벽 모두 포함한다.
(59) a. Who do you think \([CP[\text{C} e [IP t would win]]]\)?
b. Who do you believe \([CP[\text{C} e [IP t is honest]]]\)?

C를 [WH]성에 따라 다음과 같이 하위범주화해 보기로 하자.

(60) a. \([+ WH]:\) whether
b. \([- WH]:\) that, for, if
c. \([0 WH]:\) e

공법주로 나타난 C를 (60c)처럼 [WH] 값이 없는 C로 간주하면, 모든 혼적은 선행사 지배되고 N이나 \([\pm WH]\)로 어휘화된 C가 아닌 핵에 의해 핵지배되어야 한다고 생각할 수 있다. 그런데, (56)과 같은 구조에서 내포문의 I가 주어 위치의 t를 핵지배한다면 (56)을 적격 구조로 오판하게 되므로, 이와 같은 핵지배가 공법주 원리에 포함되지 않도록 Rizzi의 핵지배와 고유 핵지배 요건을\(^{13}\) 수정하여 다음과 같은 공법주 원리를 설정해 보자.

(61) ECP: Every trace must be antecedent governed and properly head governed.

(62) a. Proper Head Government: \(a\) is properly head governed iff \(a\) is canonically governed by a head that is not a category of \([+ N, - V]\) or lexicalized \(C\).
b. Canonical Government: \(a\) is canonically governed iff \(a\) is governed in the direction of the language concerned.

그러면, Chomsky가 하위접 조건과 공법주 원리로 설명하는 구조에 수정공법주 원리 (61)을 적용해 보기로 하자.

(63) a \(^*\) Whom did \([IP[\text{NP} t' [\text{\textit{N} pictures of t}] [\textit{\text{it surprise Mary}]}]]\)?
b. \(^*\) How would \([IP[\text{CP} t' [\text{IP PRO to behave t}] [\text{\textit{it be inappropriate}]}]]\)?

\(^{13}\) Rizzi는 ECP와 고유핵지배 요건을 다음과 같이 정의한다.

a. ECP: A nonpronominal empty category must be properly head governed.
b. Proper Head Government: A trace must be head governed within the immediate projection of the head.

(64) a. * Why did they leave \([IP \ t' \ [c' \ e \ [IP \ you \ fixed \ the \ car \ t]]]]\)?
 b. * How was he fired \([PP \ after \ [IP \ behaving \ t]]\)?

(65) a. * To whom have you found \([NP \ [NP \ someone] \ [CP \ who \ would \ speak \ t]]\)?
 b. * Which book did you announce a plan \([CP \ t' \ [c' \ for \ [IP \ Mary \ to \ read \ t]]\)?

(63a)에서 \(t\)는 \(t'\)에 의해 선행사 지배되고 \(P(of)\)에 의해 고유 형지배되지만, 주어 \(NP\)가 \(H-mark\)되지 않으므로 고유형지배이 되어 \(t'\)이 선행사 지배될 수 없으며 고유 형지배될 수도 없기 때문에 공범주 원리로 지배하게 된다. (63b)에서는 주어인 \(CP\)가 \(H-mark\)되지 않으므로 \(t'\)이 선행사 지배 요건과 고유 형지배 요건을 위배한다. (64)는 부가절 \(PP\)가 \(H-mark\)되지 않기 때문에 \(t'\)이 선행사 지배될 수도 없고 고유 형지배될 수도 없다. 복합명사구 제약을 위배한 (65a)에서는 관계절 \(CP\)가 \(H-mark\)되지 않으므로 \(t\)가 선행사 지배요건과 고유 형지배 요건을 위배한다. 반면에, (65b)에서는 동격절 \(CP\)가 \(N\)에 의해 \(H-mark\)되므로 \(t'\)이 why에 의해 선행사 지배될 수 있다. 그러나, \(N\)은 고유 형지배자가 아니기 때문에 \(t'\)이 고유 형지배 요건을 위배한다. 이처럼 공범주 원리 (61)은 (63) - (65)의 부격적 구조를 공범주 원리만으로 설명할 수 있기 때문에 하위인접 조건을 별도로 설정할 필요가 없으며, (65a, b)의 적격성의 차이도 올바르게 판정할 수 있다.

또, 어휘로 나타난 \(C\)는 고유 형지배자가 아니기 때문에 that - \(t\), whether - \(t\), if - \(t\), for - \(t\) 등의 구조도 공범주 원리로 배제할 수 있다.

(66) a. * Who do you wonder \([CP \ t' \ [c' \ that \ [IP \ t \ is \ honest]]]\)?
 b. * Who do you wonder \([CP \ t' \ [c' \ whether \ [IP \ t \ would \ win]]\)?
 c. * Who do you prefer \([CP \ t' \ [c' \ for \ [IP \ t \ to \ win]]\)?
 d. * Who did you ask Mary \([CP \ t' \ [c' \ if \ [IP \ t \ would \ come]]\)?

(66)의 주어 혼합과는 달리, 다음 (67)의 \(t\)는 \(V\)와 \(I\)에 의해 고유 형지배될 수 있으므로 주어의 이동과 보충어 및 부가어의 이동의 비대칭성을 설명할 수 있다.

(67) a. What do you think \([CP \ t' \ that \ he \ bought \ t]\)?
 b. Why do you think \([CP \ t' \ that \ he \ bought \ it \ t]\)?

이번에는 명사구 이동에 대해서 생각해 보기로 하자.
(68) a. John is certain [[IP t to pass the exam]
 b. John appears [[t to be sick]

(69) a. *John seems that it is certain t to be intelligent
 b. *Mary seems t’ to be likely John to love t

(70) a. John is believed [[[t is intelligent]]]
 b. *Who [[IP t” is believed [CIP t’ [e [IP t is intelligent]]]]

(68)의 A - 연쇄에서는 John과 t 사이에 장벽이 없으므로 John이 t를 선행자 지배하고, 또, t는 A(certain)와 V(appear)에 의해 고유 핵지배된다. 그러나, (69)의 연쇄에는 비록 고유장벽은 없지만 A - SPEC인 it와 John이 최소장벽이 되므로 t가 선행자 지배될 수 없다. (70)에서도 t와 t’ 및 t”이 공범주 원리를 충족하지만, 연쇄 (John, t)와 (who, t”, t’, t)에 두개의 격표시된 위치가 있으므로, 이와 같은 구조는 격여과(Case filter)에 의해 배제된다.

다음으로, (71)과 같은 wh - 섬 조건을 위반한 경유를 보자.

(71) a. *What j do you wonder [[[CIP who, [e [IP t, bought tj]]]]]]
 b. *To whom j did you wonder [[[CIP what, [e [IP John gave t, tj]]]]]]

(71)의 tj와 tj는 고유 핵지배 요건을 충족하지만 A’ - SPEC인 who와 what이 최소장벽이 되므로 tj가 선행자 지배될 수 없어 공범주 원리를 위반한다.

이처럼, (61)의 공범주 원리는 각종 섬위배 현상을 설명할 수 있을 뿐 아니라, 다음과 같은 중량명사구 이동(heavy NP shift)에서 주어와 보충어의 비대칭성을 올바르게 예측할 수 있다.

(72) a. *[[IP [[IP t are intelligent] [NP all the students who can solve this problem]]]]
 b. I would like to introduce t to Mary [[all the students who can solve this problem]]

(72)의 위치된 중량명사구는 IP에 부가되는 것으로 가정하면, IP가 고유장

(14) Chomsky(1986:135) : A CHAIN is Case - marked if it contains exactly one
 Case - marked position : a position in a Case - marked CHAIN is visible for
 θ - marking.

(15) (71b)의 내포문의 VP는 다음과 같은 구조를 갖는 것으로 간주한다.
 ... [t’ I [VP [V V NP] NP] ...
벽이 되지 않으므로 t가 외치된 NP에 의해 행사는 지배된다. 그러나, (72a)의 t는 고유 핵지배될 수 없으므로 공범주 원리를 위배하는 반면, (72b)의 t는 V (introduce)에 의해 고유 핵지배되므로 (72b)는 정문이 된다.

다음으로, 해의 흔적에 대해서 생각해 보기로 하자.

(73) a. Who [C e [IP t likes John]]?
 b. [C Can [IP you [t t speak English]]?]
 c. *[CP Who [C e does [IP t [t t like John]]]]?

(73a)의 t는 who에 의해 행사는 지배되고 e에 의해 고유 핵지배되어 공범주 원리를 충족한다. (16) (73b)에서는 C가 비어 있을 때 I가 핵이동할 때 C를 대치 하므로 t가 C를 대치한 I에 의해 행사는 지배되고 고유 핵지배된다. (73c)에서 도 I가 C를 대치한 것으로 볼 수 있으나, t는 who에 의해 행사는 지배되고 does에 의해 고유 핵지배되는 반면 t가 비록 does에 의해 행사는 지배될 수 있으나 고유 핵지배될 수 없기 때문에 공범주 원리를 위배한다. 이때, does가 tj 에 대한 고유 핵지배자가 될 수 없는 것은 does가 tj 보다 가까이 있는 tj를 고유 핵지배하므로 tj를 고유 핵지배한다면 하나의 요소가 이중으로 핵지배하는 결과가 되기 때문이라고 생각할 수 있다.

(74) a. I decided [CP [C e [IP PRO to go]]]
 b. I prefer [CP [C e for [IP him to win]]]
 c. I believe [IP him to be honest]
 d. I believe [CP [C e / that [IP he is honest]]]

(16) Rizzi는 고유 핵지배를 해의 직접투사 내에서 핵지배되는 것으로 정의하고, C는 고유 핵지배자가 아닌 것으로 간주하기 때문에, (73a)와 같이 C가 비어 있을 때는 자칠 AGR가 나타날 수 있으며, 이 AGR가 t를 고유 핵지배하는 것으로 가정한다. 또, 주 (13)에서 언급했듯이, Rizzi는 해의 흔적은 고유 핵지배 요건을 충족할 필요가 없는 것으로 가정하기 때문에, (73c)가 부적격 구조가 되는 것은 does가 C에 관련된 것임으로 t를 고유 핵지배할 수 없고 I 내에는 t를 핵지배할 해가 없으므로, t가 고유 핵지배되지 않기 때문인 것으로 분석한다.

(74a, b)를 비교해 볼 때, (74a)의 e는 내포문의 주어를 격표시해서는 안되는데 반면, (74b)의 for는 내포문의 주어를 지배하고 격표시해야 한다. (74c)의 V와는 달리 (74d)의 e와 that도 내포문의 주어를 격표시할 수 없다. 어떤 요소가 핵지배될 때 격이 부여되는 것으로 가정하면, for, that, e 등의 C는 핵지배 자이지만 이 중에서 for만 예외적으로 격표시 할 수 있는 것으로 생각할 수 있다. 그려다면, 핵지배 요건을 다음과 같이 설정할 수 있다.(18)

(75) α head governs β iff α is a head m · commanding β and no barrier intervenes.

5. 결 론

지금까지 Chomsky의 장벽이론과 이를 토대로 한 국부성 조건의 문제점을 검토하고, Chomsky의 고유장벽과 Rizzi의 상대적 최소장벽을 지배와 이동에 대한 장벽으로 간주하되 고유 핵지배 요건을 수정하여 하위인접 조건과 공범주 원리를 통합할 수 있는 국부성 조건으로 다음과 같은 공범주 원리를 설정했다.

(76) ECP : Every trace must be antecedent governed and properly head governed.

(77) α antecedent governs β iff
 (1) α and β are coindexed,
 (2) α c · commands β,
 (3) No barrier intervenes.

(78) a. α is properly head governed iff α is canonically governed by a head that is not a category of [+N, −V] or lexicalized C.
 b. α is canonically governed iff α is governed in the canonical direction of government in the language concerned.
 c. α head governs β iff α is a head m · commanding β and no barrier intervenes.
 d. α H · marks β iff β is a complement of α.

(79) X a-governs Y only if there is no barrier intervening between X and Y.
 \(a = \text{head} / \text{antecedent} \)

(80) a. A maximal projection is an inherent barrier iff it is not H-marked.
 b. (i) Z is a relativized minimal barrier for head government iff Z is a
 head intervening between the governor and the governee.
 (ii) Z is a relativized minimal barrier for antecedent government in \(\beta \)-
 chain iff Z is in \(\beta \)-position intervening the governor and the gov-
 ernee. \((\beta = |A,A',X^0|) \)

(81) Z intervenes between X and Y iff Z c-commands Y and Z does not c-
 command X.

공법주 원리를 이와 같이 수정하면 Chomsky처럼 특수한 부가조건이나 제약
을 가정할 필요가 없다. 또, 논형과 부가어의 모든 혼적이 공법주 원리의 적용
을 받게 되므로 하위인접 조건을 공법주 원리와 통합함으로써 지배와 이동에
한국부성 조건을 일원화할 수 있을 뿐 아니라, Chomsky의 공법주 원리에
나타나는 논형의 혼적과 부가어의 혼적의 비대칭성도 제거할 수 있다. 또,
Rizzi처럼 공법주 원리와 선형화 지배 요건을 총각해야 하는 혼적과 공법주 원
리와 결속요건을 총각해야 하는 혼적이 혼적의 성격을 이원화할 필요가 없으
며, 핵의 혼적도 공법주 원리의 적용을 받게 되므로 모든 혼적을 하나의 보편
원리로 설명할 수 있다. 그러나, 극히 제한된 자료를 토대로 논의한 바, 이 공
법주 원리의 타당성을 입증할 보다 많은 검증이 필요하다.
References
